山羊抗小鼠IgG H&L (10nm Gold) (ab39619)
Key features and details
- Goat Anti-Mouse IgG H&L (10nm Gold)
- Conjugation: Gold 10nm
- Host species: Goat
- Isotype: IgG
- Suitable for: Electron Microscopy
Related conjugates and formulations
Agarose
Alexa Fluor® 405
Alexa Fluor® 488
Alexa Fluor® 555
Alexa Fluor® 568
Alexa Fluor® 594
Alexa Fluor® 647
Alexa Fluor® 680
Alexa Fluor® 750
Alexa Fluor® 790
Alkaline Phosphatase
APC
beta-galactosidase
Biotin
Cy2 ®
Cy3 ®
Cy5 ®
Cy5.5 ®
DyLight® 488
DyLight® 550
DyLight® 594
DyLight® 650
FITC
Glucose Oxidase
Gold 6nm
HRP
HRP polymer
PE
Texas Red ®
TRITC
Unconjugated
Unconjugated
概述
-
产品名称
山羊抗小鼠IgG H&L (10nm Gold)
参阅全部 IgG 二抗 -
宿主
Goat -
靶标种属
Mouse -
经测试应用
适用于: Electron Microscopymore details -
免疫原
Mouse IgG whole molecule.
-
偶联物
Gold 10nm
性能
-
形式
Liquid -
存放说明
Shipped at 4°C. Store at +4°C. -
存储溶液
Preservative: 0.097% Sodium azide
Constituents: PBS, 1% BSA -
Concentration information loading...
-
纯度
Immunogen affinity purified -
纯化说明
This product has been immuno-affinity purified and immuno cross-absorbed to reduce non-specific reactions. The activity of each lot is determined using a dot-spot test system as described by Moeremans et al., J. Immunol. Methods, 74, (1984), 353. -
克隆
多克隆 -
同种型
IgG -
常规说明
This product is an immunogold reagent built around colloidal gold particles of 10nm. The paritcle population is monodisperse and thus shows minimal size variation and overlap. Typically, the coefficient of variance for the 6nm particle size conjugate is less than 10 %.
-
研究领域
应用
The Abpromise guarantee
Abpromise™承诺保证使用ab39619于以下的经测试应用
“应用说明”部分 下显示的仅为推荐的起始稀释度;实际最佳的稀释度/浓度应由使用者检定。
应用 | Ab评论 | 说明 |
---|---|---|
Electron Microscopy |
说明 |
---|
应用说明
Electron Microscopy: Use at an assay dependent dilution.
Not yet tested in other applications.
Optimal dilutions/concentrations should be determined by the end user.
Not yet tested in other applications.
Optimal dilutions/concentrations should be determined by the end user.
数据表及文件
-
SDS download
-
Datasheet download
文献 (9)
ab39619 被引用在 9 文献中.
- Dao TNT et al. Chimeric nanocomposites for the rapid and simple isolation of urinary extracellular vesicles. J Extracell Vesicles 11:e12195 (2022). PubMed: 35188341
- Wang HL et al. Sirtuin5 protects colorectal cancer from DNA damage by keeping nucleotide availability. Nat Commun 13:6121 (2022). PubMed: 36253417
- Bielaszewska M et al. In Vivo Secretion of ß-Lactamase-Carrying Outer Membrane Vesicles as a Mechanism of ß-Lactam Therapy Failure. Membranes (Basel) 11:N/A (2021). PubMed: 34832035
- Shinde A et al. Transglutaminase-2 facilitates extracellular vesicle-mediated establishment of the metastatic niche. Oncogenesis 9:16 (2020). PubMed: 32054828
- Blanco-Rodriguez G et al. Remodeling of the Core Leads HIV-1 Preintegration Complex into the Nucleus of Human Lymphocytes. J Virol 94:N/A (2020). PubMed: 32238582
- Kong B et al. Virucidal nano-perforator of viral membrane trapping viral RNAs in the endosome. Nat Commun 10:185 (2019). PubMed: 30643128
- Varcianna A et al. Micro-RNAs secreted through astrocyte-derived extracellular vesicles cause neuronal network degeneration in C9orf72 ALS. EBioMedicine 40:626-635 (2019). PubMed: 30711519
- Watson DC et al. Scalable, cGMP-compatible purification of extracellular vesicles carrying bioactive human heterodimeric IL-15/lactadherin complexes. J Extracell Vesicles 7:1442088 (2018). PubMed: 29535850
- Nash LA et al. Survival Motor Neuron Protein is Released from Cells in Exosomes: A Potential Biomarker for Spinal Muscular Atrophy. Sci Rep 7:13859 (2017). Electron Microscopy . PubMed: 29066780