重组人Nav1.5/SCN5A蛋白(ab132328)
Key features and details
- Expression system: Wheat germ
- Suitable for: WB, SDS-PAGE, ELISA
描述
-
产品名称
重组人Nav1.5/SCN5A蛋白 -
表达系统
Wheat germ -
Accession
-
蛋白长度
Full length protein -
无动物成分
No -
性质
Recombinant -
-
种属
Human -
序列
MANFLLPRGTSSFRRFTRESLAAIEKRMAEKQARGSTTLQESREGLPEEE APRPQLDLQASKKLPDLYGNPPQELIGEPLEDLDPFYSTQKTFIVLNKGK TIFRFSATNALYVLSPFHPIRRAAVKILVHSLFNMLIMCTILTNCVFMAQ HDPPPWTKYVEYTFTAIYTFESLVKILARGFCLHAFTFLRDPWNWLDFSV IIMAASVLGTLFFPMSIQATSTS -
预测分子量
52 kDa including tags -
氨基酸
1 to 223
-
技术指标
Our Abpromise guarantee covers the use of ab132328 in the following tested applications.
The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.
-
应用
Western blot
SDS-PAGE
ELISA
-
形式
Liquid -
补充说明
This product was previously labelled as Nav1.5.
-
Concentration information loading...
制备和贮存
-
稳定性和存储
Shipped on dry ice. Upon delivery aliquot and store at -80ºC. Avoid freeze / thaw cycles.
pH: 8.00
Constituents: 0.31% Glutathione, 0.79% Tris HCl
常规信息
-
别名
- Cardiac tetrodotoxin insensitive voltage dependent sodium channel alpha subunit
- CDCD2
- CMD1E
see all -
功能
This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant Na(+) channel isoform. This channel is responsible for the initial upstroke of the action potential. -
组织特异性
Found in jejunal circular smooth muscle cells (at protein level). Expressed in human atrial and ventricular cardiac muscle but not in adult skeletal muscle, brain, myometrium, liver, or spleen. Isoform 4 is expressed in brain. -
疾病相关
Defects in SCN5A are a cause of progressive familial heart block type 1A (PFHB1A) [MIM:113900]; also known as Lenegre-Lev disease or progressive cardiac conduction defect (PCCD). PFHB1A is an autosomal dominant cardiac bundle branch disorder that may progress to complete heart block. PFHB1A is characterized by progressive alteration of cardiac conduction through the His-Purkinje system with right or left bundle branch block and widening of QRS complexes, leading to complete atrio-ventricular block and causing syncope and sudden death.
Defects in SCN5A are the cause of long QT syndrome type 3 (LQT3) [MIM:603830]. Long QT syndromes are heart disorders characterized by a prolonged QT interval on the ECG and polymorphic ventricular arrhythmias. They cause syncope and sudden death in response to exercise or emotional stress. LQT3 inheritance is an autosomal dominant.
Defects in SCN5A are the cause of Brugada syndrome type 1 (BRS1) [MIM:601144]. BRS1 is an autosomal dominant tachyarrhythmia characterized by right bundle branch block and ST segment elevation on an electrocardiogram (ECG). It can cause the ventricles to beat so fast that the blood is prevented from circulating efficiently in the body. When this situation occurs (called ventricular fibrillation), the individual will faint and may die in a few minutes if the heart is not reset.
Defects in SCN5A are the cause of sick sinus syndrome type 1 (SSS1) [MIM:608567]. The term 'sick sinus syndrome' encompasses a variety of conditions caused by sinus node dysfunction. The most common clinical manifestations are syncope, presyncope, dizziness, and fatigue. Electrocardiogram typically shows sinus bradycardia, sinus arrest, and/or sinoatrial block. Episodes of atrial tachycardias coexisting with sinus bradycardia ('tachycardia-bradycardia syndrome') are also common in this disorder. SSS occurs most often in the elderly associated with underlying heart disease or previous cardiac surgery, but can also occur in the fetus, infant, or child without heart disease or other contributing factors, in which case it is considered to be a congenital disorder.
Defects in SCN5A are the cause of ventricular fibrillation paroxysmal familial type 1 (VF1) [MIM:603829]. A cardiac arrhythmia marked by fibrillary contractions of the ventricular muscle due to rapid repetitive excitation of myocardial fibers without coordinated contraction of the ventricle and by absence of atrial activity.
Defects in SCN5A can be a cause of sudden infant death syndrome (SIDS) [MIM:272120]. SIDS is the sudden death of an infant younger than 1 year that remains unexplained after a thorough case investigation, including performance of a complete autopsy, examination of the death scene, and review of clinical history. Pathophysiologic mechanisms for SIDS may include respiratory dysfunction, cardiac dysrhythmias, cardiorespiratory instability, and inborn errors of metabolism, but definitive pathogenic mechanisms precipitating an infant sudden death remain elusive. Long QT syndromes-associated mutations can be responsible for some of SIDS cases.
Defects in SCN5A may be a cause of familial atrial standstill (FAS) [MIM:108770]. Atrial standstill is an extremely rare arrhythmia, characterized by the absence of electrical and mechanical activity in the atria. Electrocardiographically, it is characterized by bradycardia, the absence of P waves, and a junctional narrow complex escape rhythm.
Defects in SCN5A are the cause of cardiomyopathy dilated type 1E (CMD1E) [MIM:601154]; also known as dilated cardiomyopathy with conduction disorder and arrhythmia or dilated cardiomyopathy with conduction defect 2. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death. -
序列相似性
Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.5/SCN5A subfamily.
Contains 1 IQ domain. -
结构域
The sequence contains 4 internal repeats, each with 5 hydrophobic segments (S1,S2,S3,S5,S6) and one positively charged segment (S4). Segments S4 are probably the voltage-sensors and are characterized by a series of positively charged amino acids at every third position. -
翻译后修饰
Ubiquitinated by NEDD4L; which promotes its endocytosis. Does not seem to be ubiquitinated by NEDD4 or WWP2. -
细胞定位
Membrane. - Information by UniProt
图片
实验方案
To our knowledge, customised protocols are not required for this product. Please try the standard protocols listed below and let us know how you get on.
数据表及文件
-
Datasheet download
文献 (0)
ab132328 尚未被引用在任何文献中。