Anti-BMAL1抗体(ab3350)
Key features and details
- Rabbit polyclonal to BMAL1
- Suitable for: WB, ICC
- Reacts with: Mouse, Rat, Human
- Isotype: IgG
选择批间可重复性更高的重组抗体
- 研究可靠 —— 各批次间结果一致且可重复
- 长期批量供应 —— 采用重组技术,可实现快速生产
- 首次实验即可成功 —— 经过大量验证确认了特异性
- 符合伦理标准 —— 产品不含动物成分
概述
-
产品名称
Anti-BMAL1抗体
参阅全部 BMAL1 一抗 -
描述
兔多克隆抗体to BMAL1 -
宿主
Rabbit -
特异性
Detects BMAL 1 / aryl hydrocarbon nuclear translocator 3 (ARNT 3) from hamster and mouse tissues as well as recombinant human BMAL 1.
-
经测试应用
适用于: WB, ICCmore details -
种属反应性
与反应: Mouse, Rat, Human
预测可用于: Horse, Chicken, Syrian hamster -
免疫原
Synthetic peptide corresponding to Mouse BMAL1 aa 582-594.
Sequence:DMIDNDQGSSSPS
(Peptide available asab4959) -
阳性对照
- WB: human U251 and U87-MG, mouse NIH-3T3 cell lines; human SH-SY5Y, U-87 MG, U-2 OS, HeLa, HEK293,and JURKAT cells, and rat brain tissue; ICC: SH-SY5Y cells
-
常规说明
The Life Science industry has been in the grips of a reproducibility crisis for a number of years. Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets your needs before purchasing.
If you have any questions, special requirements or concerns, please send us an inquiry and/or contact our Support team ahead of purchase. Recommended alternatives for this product can be found below, along with publications, customer reviews and Q&As
性能
-
形式
Liquid -
存放说明
Shipped at 4°C. Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C or -80°C. Avoid freeze / thaw cycle. -
存储溶液
Preservative: 0.05% Sodium azide
Constituents: 0.1% BSA, PBS -
Concentration information loading...
-
纯度
Immunogen affinity purified -
克隆
多克隆 -
同种型
IgG -
研究领域
相关产品
-
ChIP Related Products
-
Compatible Secondaries
-
Immunizing Peptide (Blocking)
-
Isotype control
-
Recombinant Protein
应用
应用 | Ab评论 | 说明 |
---|---|---|
WB | (1) |
1/200. Predicted molecular weight: 69.4 kDa.Can be blocked with BMAL1 peptide (ab4959). This antibody detects a protein which corresponds to the product of a hamster BMAL 1 fusion construct overexpressed in E. coli (110 kDa band)as well as recombinant human BMAL1.
|
ICC |
Use a concentration of 2 µg/ml.
|
说明 |
---|
WB
1/200. Predicted molecular weight: 69.4 kDa.Can be blocked with BMAL1 peptide (ab4959). This antibody detects a protein which corresponds to the product of a hamster BMAL 1 fusion construct overexpressed in E. coli (110 kDa band)as well as recombinant human BMAL1. |
ICC
Use a concentration of 2 µg/ml. |
靶标
-
功能
Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK
NPAS2-ARNTL/BMAL1
ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. ARNTL/BMAL1 positively regulates myogenesis and negatively regulates adipogenesis via the transcriptional control of the genes of the canonical Wnt signaling pathway. Plays a role in normal pancreatic beta-cell function; regulates glucose-stimulated insulin secretion via the regulation of antioxidant genes NFE2L2/NRF2 and its targets SESN2, PRDX3, CCLC and CCLM. Negatively regulates the mTORC1 signaling pathway; regulates the expression of MTOR and DEPTOR. Controls diurnal oscillations of Ly6C inflammatory monocytes; rhythmic recruitment of the PRC2 complex imparts diurnal variation to chemokine expression that is necessary to sustain Ly6C monocyte rhythms. Regulates the expression of HSD3B2, STAR, PTGS2, CYP11A1, CYP19A1 and LHCGR in the ovary and also the genes involved in hair growth. Plays an important role in adult hippocampal neurogenesis by regulating the timely entry of neural stem/progenitor cells (NSPCs) into the cell cycle and the number of cell divisions that take place prior to cell-cycle exit. Regulates the circadian expression of CIART and KLF11. The CLOCK-ARNTL/BMAL1 heterodimer regulates the circadian expression of SERPINE1/PAI1, VWF, B3, CCRN4L/NOC, NAMPT, DBP, MYOD1, PPARGC1A, PPARGC1B, SIRT1, GYS2, F7, NGFR, GNRHR, BHLHE40/DEC1, ATF4, MTA1, KLF10 and also genes implicated in glucose and lipid metabolism. Represses glucocorticoid receptor NR3C1/GR-induced transcriptional activity by reducing the association of NR3C1/GR to glucocorticoid response elements (GREs) via the acetylation of multiple lysine residues located in its hinge region. Promotes rhythmic chromatin opening, regulating the DNA accessibility of other transcription factors. The NPAS2-ARNTL/BMAL1 heterodimer positively regulates the expression of MAOA, F7 and LDHA and modulates the circadian rhythm of daytime contrast sensitivity by regulating the rhythmic expression of adenylate cyclase type 1 (ADCY1) in the retina. -
组织特异性
Hair follicles (at protein level). Highly expressed in the adult brain, skeletal muscle and heart. -
序列相似性
Contains 1 bHLH (basic helix-loop-helix) domain.
Contains 1 PAC (PAS-associated C-terminal) domain.
Contains 2 PAS (PER-ARNT-SIM) domains. -
翻译后修饰
Ubiquitinated, leading to its proteasomal degradation.
O-glycosylated; contains O-GlcNAc. O-glycosylation by OGT prevents protein degradation by inhibiting ubiquitination. It also stabilizes the CLOCK-ARNTL/BMAL1 heterodimer thereby increasing CLOCK-ARNTL/BMAL1-mediated transcription of genes in the negative loop of the circadian clock such as PER1/2/3 and CRY1/2.
Acetylated on Lys-538 upon dimerization with CLOCK. Acetylation facilitates CRY1-mediated repression. Deacetylated by SIRT1, which may result in decreased protein stability.
Phosphorylated upon dimerization with CLOCK. Phosphorylation enhances the transcriptional activity, alters the subcellular localization and decreases the stability of the CLOCK-ARNTL/BMAL1 heterodimer by promoting its degradation. Phosphorylation shows circadian variations in the liver with a peak between CT10 to CT14. Phosphorylation at Ser-90 by CK2 is essential for its nuclear localization, its interaction with CLOCK and controls CLOCK nuclear entry.
Sumoylated on Lys-259 upon dimerization with CLOCK. Predominantly conjugated to poly-SUMO2/3 rather than SUMO1 and the level of these conjugates undergo rhythmic variation, peaking at CT9-CT12. Sumoylation localizes it exclusively to the PML body and promotes its ubiquitination in the PML body, ubiquitin-dependent proteasomal degradation and the transcriptional activity of the CLOCK-ARNTL/BMAL1 heterodimer. -
细胞定位
Nucleus. Cytoplasm. Nucleus, PML body. Shuttles between the nucleus and the cytoplasm and this nucleocytoplasmic shuttling is essential for the nuclear accumulation of CLOCK, target gene transcription and the degradation of the CLOCK-ARNTL/BMAL1 heterodimer. The sumoylated form localizes in the PML body. Sequestered to the cytoplasm in the presence of ID2. - Information by UniProt
-
数据库链接
- Entrez Gene: 374115 Chicken
- Entrez Gene: 406 Human
- Entrez Gene: 11865 Mouse
- Entrez Gene: 29657 Rat
- Omim: 602550 Human
- SwissProt: O00327 Human
- SwissProt: Q9WTL8 Mouse
- SwissProt: Q9EPW1 Rat
see all -
别名
- ARNT like protein 1 brain and muscle antibody
- Arntl antibody
- Aryl hydrocarbon receptor nuclear translocator like antibody
see all
图片
-
Immunocytochemistry analysis of 4% paraformaldehyde-fixed SH-SY5Y cells permeabilised with 0.1% Triton™ X-100 (10 mins) and blocked with 1% BSA (1 hour).
a) BMAL1 is stained with ab3350 at 2µg/ml concentration and Goat anti-Rabbit IgG (H+L) Superclonal™ Secondary Antibody, Alexa Fluor® 488 conjugate in 1/2000 dilution (green). b) Nuclear staining with DAPI and SlowFade® Gold Antifade Mountant (blue). c) F-actin stainined with a 1/3000 dilution Alexa Fluor® 555 Rhodamine Phalloidin (red). d) merged image. e) control with no primary antibody.
-
All lanes : Anti-BMAL1 antibody (ab3350) at 1/500 dilution
Lane 1 : U251 cell lysate
Lane 2 : U87-MG cell lysate
Lane 3 : NIH-3T3 cell lysate
Lysates/proteins at 25 µg per lane.
Predicted band size: 69.4 kDa
Observed band size: 69 kDa why is the actual band size different from the predicted? -
Anti-BMAL1 antibody (ab3350) at 1 µg/ml + HeLa (Human epithelial carcinoma cell line) Whole Cell Lysate at 10 µg
Secondary
Goat Anti-Rabbit IgG H&L (HRP) preadsorbed (ab97080) at 1/5000 dilution
Developed using the ECL technique.
Predicted band size: 69.4 kDa
Observed band size: 75 kDa why is the actual band size different from the predicted?
Additional bands at: 51 kDa. We are unsure as to the identity of these extra bands.
Exposure time: 3 minutes
The 75 kDa band observed is comparable to the molecular weight seen with other commercially available antibodies to BMAL1.
实验方案
数据表及文件
-
SDS download
-
Datasheet download
文献 (83)
ab3350 被引用在 83 文献中.
- Chen SJ et al. BMAL1/p53 mediating bronchial epithelial cell autophagy contributes to PM2.5-aggravated asthma. Cell Commun Signal 21:39 (2023). PubMed: 36803515
- Escalante-Covarrubias Q et al. Time-of-day defines NAD+ efficacy to treat diet-induced metabolic disease by synchronizing the hepatic clock in mice. Nat Commun 14:1685 (2023). PubMed: 36973248
- Yang H et al. RP58 knockdown contributes to hypoxia-ischemia-induced pineal dysfunction and circadian rhythm disruption in neonatal rats. J Pineal Res 75:e12885 (2023). PubMed: 37183291
- Alkhoury C et al. Class 3 PI3K coactivates the circadian clock to promote rhythmic de novo purine synthesis. Nat Cell Biol 25:975-988 (2023). PubMed: 37414850
- Latimer MN et al. Cardiomyocyte-specific disruption of the circadian BMAL1-REV-ERBα/β regulatory network impacts distinct miRNA species in the murine heart. Commun Biol 6:1149 (2023). PubMed: 37952007