ODQ,NO-sensitive guanylyl cyclase抑制剂(ab120022)
Key features and details
- Selective, potent inhibitor of NO-sensitive guanylyl cyclase
- CAS Number: 41443-28-1
- Soluble in DMSO to 100 mM and in ethanol to 25 mM
- Form / State: Solid
- Source: Synthetic
概述
-
产品名称
ODQ,NO-sensitive guanylyl cyclase抑制剂 -
描述
Selective,potent抑制剂of NO-sensitive guanylyl cyclase -
生物学描述
Selective, potent inhibitor of nitric oxide-sensitive guanylyl cyclase.
-
CAS编号
41443-28-1 -
化学结构
性能
-
化学名称
1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one -
分子量
187.16 -
分子式
C9H5N3O2 -
PubChem识别号
1456 -
存放说明
Store at +4°C. Store under desiccating conditions. The product can be stored for up to 12 months. -
溶解度概述
Soluble in DMSO to 100 mM and in ethanol to 25 mM -
处理
Wherever possible, you should prepare and use solutions on the same day. However, if you need to make up stock solutions in advance, we recommend that you store the solution as aliquots in tightly sealed vials at -20°C. Generally, these will be useable for up to one month. Before use, and prior to opening the vial we recommend that you allow your product to equilibrate to room temperature for at least 1 hour.
Refer to SDS for further information.
Need more advice on solubility, usage and handling? Please visit our frequently asked questions (FAQ) page for more details.
-
SMILES
O=C2ON=C3C=Nc1ccccc1N23 -
来源
Synthetic
-
研究领域
实验方案
To our knowledge, customised protocols are not required for this product. Please try the standard protocols listed below and let us know how you get on.
文献 (10)
ab120022 被引用在 10 文献中.
- Zhao Y et al. PDE2 Inhibits PKA-Mediated Phosphorylation of TFAM to Promote Mitochondrial Ca2+-Induced Colorectal Cancer Growth. Front Oncol 11:663778 (2021). PubMed: 34235078
- Al-Shboul OA et al. Changes in Gastric Smooth Muscle Cell Contraction during Pregnancy: Effect of Estrogen. J Pregnancy 2019:4302309 (2019). PubMed: 31080672
- Al-Shboul OA et al. Estrogen relaxes gastric muscle cells via a nitric oxide- and cyclic guanosine monophosphate-dependent mechanism: A sex-associated differential effect. Exp Ther Med 16:1685-1692 (2018). PubMed: 30186388
- Al-Shboul OA et al. Effect of progesterone on nitric oxide/cyclic guanosine monophosphate signaling and contraction in gastric smooth muscle cells. Biomed Rep 9:511-516 (2018). PubMed: 30546879
- Foster JD et al. Nitric oxide-mediated modulation of the murine locomotor network. J Neurophysiol 111:659-74 (2014). PubMed: 24259545
- Sieber AR et al. Non-Hebbian long-term potentiation of inhibitory synapses in the thalamus. J Neurosci 33:15675-85 (2013). PubMed: 24089475
- Toussay X et al. Locus coeruleus stimulation recruits a broad cortical neuronal network and increases cortical perfusion. J Neurosci 33:3390-401 (2013). PubMed: 23426667
- Cheung A et al. Intracellular nitric oxide mediates neuroproliferative effect of neuropeptide y on postnatal hippocampal precursor cells. J Biol Chem 287:20187-96 (2012). PubMed: 22474320
- Hartung H et al. Nitric oxide donors enhance the frequency dependence of dopamine release in nucleus accumbens. Neuropsychopharmacology 36:1811-22 (2011). PubMed: 21508928
- Jin XG et al. Nitric oxide inhibits nociceptive transmission by differentially regulating glutamate and glycine release to spinal dorsal horn neurons. J Biol Chem 286:33190-202 (2011). PubMed: 21813646