Anti-Smad3抗体- ChIP Grade (ab28379)

发表研究结果有使用 ab28379?请让我们知道,以便我们可以引用本数据表中的参考文章。

ab28379 被引用在 43 文献中.

  • Sarenac T  et al. Single-cell analysis reveals IGF-1 potentiation of inhibition of the TGF-ß/Smad pathway of fibrosis in human keratocytes in vitro. Sci Rep 6:34373 (2016). PubMed: 27687492
  • Xiao X  et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun 6:8266 (2015). ChIP ; Mouse . PubMed: 26365427
  • Dai X  et al. SMAD3 deficiency promotes vessel wall remodeling, collagen fiber reorganization and leukocyte infiltration in an inflammatory abdominal aortic aneurysm mouse model. Sci Rep 5:10180 (2015). Mouse . PubMed: 25985281
  • Singh KK  et al. The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. J Biol Chem 290:2547-59 (2015). WB ; Human . PubMed: 25527499
  • Zhao L  et al. Bufalin inhibits TGF-ß-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-ß receptors. Int J Mol Med : (2015). Human . PubMed: 26133118
  • Gancarz AM  et al. Activin receptor signaling regulates cocaine-primed behavioral and morphological plasticity. Nat Neurosci N/A:N/A (2015). PubMed: 26030849
  • Knight ER  et al. ASC deficiency suppresses proliferation and prevents medulloblastoma incidence. Oncogene N/A:N/A (2014). Mouse . PubMed: 24469054
  • O'Reilly S  et al. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-ß (TGF-ß) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. J Biol Chem 289:9952-60 (2014). WB ; Human . PubMed: 24550394
  • Campion EM  et al. Repression of the proapoptotic cellular BIK/NBK gene by Epstein-Barr virus antagonizes transforming growth factor ß1-induced B-cell apoptosis. J Virol 88:5001-13 (2014). PubMed: 24554662
  • Estarás C  et al. RNA polymerase II progression through H3K27me3-enriched gene bodies requires JMJD3 histone demethylase. Mol Biol Cell 24:351-60 (2013). WB, ChIP, ICC/IF ; Mouse . PubMed: 23243002
  • Chu IM  et al. Expression of GATA3 in MDA-MB-231 triple-negative breast cancer cells induces a growth inhibitory response to TGFß. PLoS One 8:e61125 (2013). WB . PubMed: 23577196
  • Harazono Y  et al. miR-655 Is an EMT-suppressive MicroRNA targeting ZEB1 and TGFBR2. PLoS One 8:e62757 (2013). WB ; Human . PubMed: 23690952
  • Wöbke TK  et al. CD69 is a TGF-ß/1a,25-dihydroxyvitamin D3 target gene in monocytes. PLoS One 8:e64635 (2013). WB ; Human . PubMed: 23696902
  • Gruber T  et al. Cbl-b mediates TGFß sensitivity by downregulating inhibitory SMAD7 in primary T cells. J Mol Cell Biol N/A:N/A (2013). ChIP ; Mouse . PubMed: 23709694
  • Chen G  et al. TGFß receptor I transactivation mediates stretch-induced Pak1 activation and CTGF upregulation in mesangial cells. J Cell Sci 126:3697-712 (2013). PubMed: 23781022
  • Hara S  et al. Serine 129 phosphorylation of membrane-associated a-synuclein modulates dopamine transporter function in a G protein-coupled receptor kinase-dependent manner. Mol Biol Cell 24:1649-60, S1-3 (2013). WB . PubMed: 23576548
  • Zhang P  et al. PARP-1 regulates expression of TGF-ß receptors in T cells. Blood 122:2224-32 (2013). PubMed: 23940283
  • Hedrick ED  et al. Differential PKA activation and AKAP association determines cell fate in cancer cells. J Mol Signal 8:10 (2013). Human . PubMed: 24083380
  • Kosla J  et al. Effective myofibroblast dedifferentiation by concomitant inhibition of TGF-ß signaling and perturbation of MAPK signaling. Eur J Cell Biol N/A:N/A (2013). PubMed: 24315689
  • Míguez DG  et al. Smad2 and Smad3 cooperate and antagonize simultaneously in vertebrate neurogenesis. J Cell Sci 126:5335-43 (2013). PubMed: 24105267
  • Soond SM  et al. Novel WWP2 ubiquitin ligase isoforms as potential prognostic markers and molecular targets in cancer. Biochim Biophys Acta 1832:2127-35 (2013). WB . PubMed: 23938591
  • Zhou B  et al. Interactions Between ß-Catenin and Transforming Growth Factor-ß Signaling Pathways Mediate Epithelial-Mesenchymal Transition and Are Dependent on the Transcriptional Co-activator cAMP-response Element-binding Protein (CREB)-binding Protein (CBP). J Biol Chem 287:7026-38 (2012). WB, IHC-P, ChIP ; Rat . PubMed: 22241478
  • Gardner A  et al. The critical role of TAK1 in accentuated epithelial to mesenchymal transition in obliterative bronchiolitis after lung transplantation. Am J Pathol 180:2293-308 (2012). PubMed: 22525462
  • van de Laar IM  et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet 43:121-6 (2011). IHC-P ; Human . PubMed: 21217753
  • Gressner OA  et al. Connective tissue growth factor reacts as an IL-6/STAT3-regulated hepatic negative acute phase protein. World J Gastroenterol 17:151-63 (2011). WB ; Rat . PubMed: 21245987
  • Tapia-González S  et al. Dopamine and a-synuclein dysfunction in Smad3 null mice. Mol Neurodegener 6:72 (2011). IHC-Fr ; Mouse . PubMed: 21995845
  • Xu Y  et al. Receptor type protein tyrosine phosphatase-kappa mediates cross-talk between transforming growth factor-beta and epidermal growth factor receptor signaling pathways in human keratinocytes. Mol Biol Cell 21:29-35 (2010). ChIP ; Human . PubMed: 19864455
  • Masszi A  et al. Fate-determining mechanisms in epithelial-myofibroblast transition: major inhibitory role for Smad3. J Cell Biol 188:383-99 (2010). WB ; Human . PubMed: 20123992
  • Wang FE  et al. MicroRNA-204/211 alters epithelial physiology. FASEB J : (2010). WB ; Human . PubMed: 20056717
  • Cunningham MF  et al. S100A4 expression is increased in stricture fibroblasts from patients with fibrostenosing Crohn's disease and promotes intestinal fibroblast migration. Am J Physiol Gastrointest Liver Physiol 299:G457-66 (2010). WB ; Human . PubMed: 20489045
  • Andrianifahanana M  et al. ERBB receptor activation is required for profibrotic responses to transforming growth factor beta. Cancer Res 70:7421-30 (2010). WB ; Human . PubMed: 20841477
  • Maioli M  et al. Hyaluronan esters drive Smad gene expression and signaling enhancing cardiogenesis in mouse embryonic and human mesenchymal stem cells. PLoS One 5:e15151 (2010). WB, ICC/IF ; Human, Mouse . PubMed: 21152044
  • Fu Y  et al. Differential regulation of transforming growth factor {beta} signaling pathways by notch in human endothelial cells. J Biol Chem 284:19452-62 (2009). ChIP, IF ; Mouse . PubMed: 19473993
  • Luo DD  et al. Interleukin-1 beta regulates proximal tubular cell transforming growth factor beta-1 signalling. Nephrol Dial Transplant 24:2655-65 (2009). PubMed: 19420104
  • Minoo P  et al. SMAD3 prevents binding of NKX2.1 and FOXA1 to the SpB promoter through its MH1 and MH2 domains. Nucleic Acids Res 36:179-88 (2008). WB . PubMed: 18003659
  • Carlson ME  et al. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454:528-32 (2008). WB ; Mouse . PubMed: 18552838
  • Diamond ME  et al. Differential growth factor regulation of N-cadherin expression and motility in normal and malignant oral epithelium. J Cell Sci 121:2197-207 (2008). WB ; Human . PubMed: 18544635
  • Bhaskaran M  et al. Trans-differentiation of alveolar epithelial type II cells to type I cells involves autocrine signaling by transforming growth factor beta 1 through the Smad pathway. J Biol Chem 282:3968-76 (2007). PubMed: 17158884
  • Calon A  et al. Different effects of the Cdx1 and Cdx2 homeobox genes in a murine model of intestinal inflammation. Gut 56:1688-95 (2007). PubMed: 17595234
  • Levy L  et al. Arkadia activates Smad3/Smad4-dependent transcription by triggering signal-induced SnoN degradation. Mol Cell Biol 27:6068-83 (2007). WB ; Human . PubMed: 17591695
  • Zhang M  et al. Polarity of response to transforming growth factor-beta1 in proximal tubular epithelial cells is regulated by beta-catenin. J Biol Chem 282:28639-47 (2007). IP ; Human . PubMed: 17623674
  • Li L  et al. A pathway regulated by cell cycle inhibitor p27Kip1 and checkpoint inhibitor Smad3 is involved in the induction of T cell tolerance. Nat Immunol 7:1157-65 (2006). PubMed: 17013388
  • Gupta A  et al. Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 442:82-5 (2006). PubMed: 16738545

Please note: All products are "FOR RESEARCH USE ONLY AND ARE NOT INTENDED FOR DIAGNOSTIC OR THERAPEUTIC USE"