Anti-RUNX1 / AML1抗体- ChIP Grade (ab23980)

发表研究结果有使用 ab23980?请让我们知道,以便我们可以引用本数据表中的参考文章。

ab23980 被引用在 24 文献中.

  • Aini H  et al. Messenger RNA delivery of a cartilage-anabolic transcription factor as a disease-modifying strategy for osteoarthritis treatment. Sci Rep 6:18743 (2016). IHC-P ; Mouse . PubMed: 26728350
  • Zang C  et al. NF-E2, FLI1 and RUNX1 collaborate at areas of dynamic chromatin to activate transcription in mature mouse megakaryocytes. Sci Rep 6:30255 (2016). CHIPseq ; Mouse . PubMed: 27457419
  • Zheng S  et al. Twist1 and Twist2 Contribute to Cytokine Downregulation following Chronic NOD2 Stimulation of Human Macrophages through the Coordinated Regulation of Transcriptional Repressors and Activators. J Immunol 195:217-26 (2015). ChIP ; Human . PubMed: 26019273
  • Sokol ES  et al. Perturbation-expression analysis identifies RUNX1 as a regulator of human mammary stem cell differentiation. PLoS Comput Biol 11:e1004161 (2015). WB, IHC ; Human . PubMed: 25894653
  • Majumder A  et al. Histone Chaperone HIRA in Regulation of Transcription Factor RUNX1. J Biol Chem 290:13053-63 (2015). PubMed: 25847244
  • Wang H  et al. NOTCH1-RBPJ complexes drive target gene expression through dynamic interactions with superenhancers. Proc Natl Acad Sci U S A 111:705-10 (2014). ChIP . PubMed: 24374627
  • Bluteau D  et al. Thrombocytopenia-associated mutations in the ANKRD26 regulatory region induce MAPK hyperactivation. J Clin Invest 124:580-91 (2014). WB, ChIP ; Human . PubMed: 24430186
  • Schmidl C  et al. The enhancer and promoter landscape of human regulatory and conventional T-cell subpopulations. Blood 123:e68-78 (2014). PubMed: 24671953
  • Calero-Nieto FJ  et al. Key regulators control distinct transcriptional programmes in blood progenitor and mast cells. EMBO J 33:1212-26 (2014). CHIPseq ; Mouse . PubMed: 24760698
  • Sashida G  et al. Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation. Nat Commun 5:4177 (2014). PubMed: 24953053
  • Wu M  et al. Deletion of core-binding factor ß (Cbfß) in mesenchymal progenitor cells provides new insights into Cbfß/Runxs complex function in cartilage and bone development. Bone 65:49-59 (2014). PubMed: 24798493
  • Cieslak A  et al. RUNX1-dependent RAG1 deposition instigates human TCR-d locus rearrangement. J Exp Med 211:1821-32 (2014). WB, IP ; Human . PubMed: 25135298
  • Wilkinson AC  et al. RUNX1 is a key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction. Cell Rep 3:116-27 (2013). IP, CHIPseq ; Human . PubMed: 23352661
  • Kierdorf K  et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273-80 (2013). Mouse . PubMed: 23334579
  • Wang T  et al. The control of hematopoietic stem cell maintenance, self-renewal, and differentiation by Mysm1-mediated epigenetic regulation. Blood 122:2812-22 (2013). ChIP ; Mouse . PubMed: 24014243
  • Ng KP  et al. Runx1 deficiency permits granulocyte lineage commitment but impairs subsequent maturation. Oncogenesis 2:e78 (2013). ChIP . PubMed: 24189977
  • Lai CB & Mager DL Role of Runt-related Transcription Factor 3 (RUNX3) in Transcription Regulation of Natural Cytotoxicity Receptor 1 (NCR1/NKp46), an Activating Natural Killer (NK) Cell Receptor. J Biol Chem 287:7324-34 (2012). ChIP, EMSA ; Human . PubMed: 22253448
  • Della Gatta G  et al. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat Med 18:436-40 (2012). ChIP . PubMed: 22366949
  • Lazarevic V  et al. T-bet represses T(H)17 differentiation by preventing Runx1-mediated activation of the gene encoding ROR?t. Nat Immunol 12:96-104 (2011). WB, IP ; Human . PubMed: 21151104
  • Farrell JJ  et al. A 3-bp deletion in the HBS1L-MYB intergenic region on chromosome 6q23 is associated with HbF expression. Blood 117:4935-45 (2011). PubMed: 21385855
  • Knezevic K  et al. A Runx1-Smad6 Rheostat Controls Runx1 Activity during Embryonic Hematopoiesis. Mol Cell Biol 31:2817-26 (2011). PubMed: 21576367
  • Wilson NK  et al. Gfi1 expression is controlled by five distinct regulatory regions spread over 100 kilobases, with Scl/Tal1, Gata2, PU.1, Erg, Meis1, and Runx1 acting as upstream regulators in early hematopoietic cells. Mol Cell Biol 30:3853-63 (2010). ChIP ; Mouse . PubMed: 20516218
  • Wilson NK  et al. Combinatorial Transcriptional Control In Blood Stem/Progenitor Cells: Genome-wide Analysis of Ten Major Transcriptional Regulators. Cell Stem Cell 7:532-44 (2010). ChIP ; Mouse . PubMed: 20887958
  • Gardini A  et al. AML1/ETO oncoprotein is directed to AML1 binding regions and co-localizes with AML1 and HEB on its targets. PLoS Genet 4:e1000275 (2008). PubMed: 19043539