ab204721
Lipoprotein Lipase Activity Assay Kit (Fluorometric)

Instructions for use:

For quantitative measurement of Lipoprotein Lipase activity in a variety of biological samples.

This product is for research use only and is not intended for diagnostic use.
Table of Contents

INTRODUCTION 1

1. BACKGROUND 1

2. ASSAY SUMMARY 2

GENERAL INFORMATION 3

3. PRECAUTIONS 3

4. STORAGE AND STABILITY 3

5. LIMITATIONS 4

6. MATERIALS SUPPLIED 4

7. MATERIALS REQUIRED, NOT SUPPLIED 5

8. TECHNICAL HINTS 6

ASSAY PREPARATION 7

9. REAGENT PREPARATION 7

10. STANDARD PREPARATION 8

11. SAMPLE PREPARATION 9

ASSAY PROCEDURE 11

12. ASSAY PROCEDURE 11

DATA ANALYSIS 13

13. CALCULATIONS 13

14. TYPICAL DATA 15

RESOURCES 17

15. QUICK ASSAY PROCEDURE 17

16. TROUBLESHOOTING 18

17. INTERFERENCES 20

18. FAQ 20

19. NOTES 21
INTRODUCTION

1. BACKGROUND
Lipoprotein Lipase Activity Assay Kit (Fluorometric) (ab204721) contains a quenched substrate that fluoresces upon hydrolysis by lipoprotein lipase (LPL). The fluorometric intensity is directly proportional to the amount of substrate hydrolyzed by the enzyme. This assay detects total lipase activity when no inhibitor is used. Comparing results in the presence or absence of an LPL inhibitor allows for quantification of LPL activity specifically. Our results indicate that the majority (~90%) of lipase activity detected by this kit in post-heparin treated mouse plasma is from LPL. To determine the exact LPL specific activity in mouse plasma, measure activity in pre- and post-heparin treated plasma.

Lipoprotein lipase (LPL) is a member of the lipase family that hydrolyzes triglycerides in chylomicrons and very low-density lipoprotein (VLDL). Digestion of triglycerides in VLDL by LPL leads to their conversion to intermediate-density lipoprotein (IDL) and then low-density lipoprotein (LDL). LPL is found attached to the luminal surface of endothelial cells in the heart, muscle, and adipose tissue. Mutations in lipoprotein lipase can lead to a variety of disorders such as lipoprotein metabolism, hypertriglyceridemia etc. Overexpression of LPL in mice has been shown to promote obesity and insulin resistance.
2. ASSAY SUMMARY

- Standard Curve Preparation
- Sample Preparation
- Add Reaction Mix
- Pre-incubate the plate at 37°C for 10 minutes.
- Measure fluorescence (Ex/Em = 482/515 nm) in a kinetic mode at 37°C for 10 minutes – 1 hour*

*For kinetic mode detection, incubation time given in this summary is for guidance only.
3. PRECAUTIONS

Please read these instructions carefully prior to beginning the assay.

- All kit components have been formulated and quality control tested to function successfully as a kit.
- We understand that, occasionally, experimental protocols might need to be modified to meet unique experimental circumstances. However, we cannot guarantee the performance of the product outside the conditions detailed in this protocol booklet.
- Reagents should be treated as possible mutagens and should be handled with care and disposed of properly. Please review the Safety Datasheet (SDS) provided with the product for information on the specific components.
- Observe good laboratory practices. Gloves, lab coat, and protective eyewear should always be worn. Never pipet by mouth. Do not eat, drink or smoke in the laboratory areas.
- All biological materials should be treated as potentially hazardous and handled as such. They should be disposed of in accordance with established safety procedures.

4. STORAGE AND STABILITY

Store kit at 4°C in the dark immediately upon receipt. Kit has a storage time of 1 year from receipt, providing components have not been reconstituted. Once opened use within 2 months.

Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in section 9. Reagent Preparation.

Aliquot components in working volumes before storing at the recommended temperature.
5. LIMITATIONS

- Assay kit intended for research use only. Not for use in diagnostic procedures.
- Do not use kit or components if it has exceeded the expiration date on the kit labels.
- Do not mix or substitute reagents or materials from other kit lots or vendors. Kits are QC tested as a set of components and performance cannot be guaranteed if utilized separately or substituted.

6. MATERIALS SUPPLIED

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Storage Condition (Before Preparation)</th>
<th>Storage Condition (After Preparation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPL Assay Buffer</td>
<td>5 mL</td>
<td>4°C</td>
<td>4°C</td>
</tr>
<tr>
<td>Substrate (in DMSO)</td>
<td>10 µL</td>
<td>4°C</td>
<td>4°C</td>
</tr>
<tr>
<td>Positive Control</td>
<td>1 Vial</td>
<td>4°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Inhibitor (Orlistat)</td>
<td>20 µL</td>
<td>4°C</td>
<td>4°C</td>
</tr>
</tbody>
</table>
7. MATERIALS REQUIRED, NOT SUPPLIED

These materials are not included in the kit, but will be required to successfully perform this assay:

- Microplate reader capable of measuring fluorescence at Ex/Em = 482/515 nm
- MilliQ water or other type of double distilled water (ddH₂O)
- Pipettes and pipette tips, including multi-channel pipette
- Assorted glassware for the preparation of reagents and buffer solutions
- Tubes for the preparation of reagents and buffer solutions
- 96 well plate with clear flat bottom, preferably black
- Dounce homogenizer (if using tissue)
- (Optional) Heparin – if measuring LPL activity from plasma
8. TECHNICAL HINTS

- This kit is sold based on number of tests. A ‘test’ simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions.
- Selected components in this kit are supplied in surplus amount to account for additional dilutions, evaporation, or instrumentation settings where higher volumes are required. They should be disposed of in accordance with established safety procedures.
- Avoid foaming or bubbles when mixing or reconstituting components.
- Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions.
- Ensure plates are properly sealed or covered during incubation steps.
- Ensure all reagents and solutions are at the appropriate temperature before starting the assay.
- Samples which generate values that are greater than the most concentrated standard should be further diluted in the appropriate sample dilution buffer.
- Make sure you have the right type of plate for your detection method of choice.
- Make sure all necessary equipment is switched on and set at the appropriate temperature.
9. REAGENT PREPARATION

- Briefly centrifuge small vials at low speed prior to opening

9.1. **LPL Assay Buffer:**

Ready to use as supplied. Equilibrate to 37°C before use. Store at 4°C.

9.2. **Substrate (in DMSO):**

Warm by placing in a 37°C bath for 1 – 5 minutes to thaw the DMSO solution before use. **NOTE:** DMSO tends to be solid when stored at 4°C, even when left at room temperature, so it needs to melt for few minutes at 37°C. Aliquot so that you have enough volume to performed the desired number of assays.

Dilute 2 µL of substrate in 1 mL of LPL Assay Buffer (or as per assay requirement). Store diluted substrate at 4°C protected from light and moisture for up to 2 weeks.

9.3. **Positive Control:**

Reconstitute the Positive Control with 220 µL of ddH₂O to make Positive Control stock solution. Aliquot Positive Control stock solution so that you have enough volume to perform the desired number of assays. Store at -20°C protected from light. Avoid repeated freeze/thaw. Once the Positive Control is thawed, use within two months.

9.4. **Inhibitor (Orlistat):**

Ready to use as supplied. Equilibrate to room temperature before use. Store at 4°C.
10. STANDARD PREPARATION

- Always prepare a fresh set of standards for every use.
- Discard the working standard solutions after use as they do not store well.

10.1. Use diluted Substrate from Section 10.1 to prepare standard curve dilution as described in the table in a microplate or microcentrifuge tubes:

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Volume of standard (µL)</th>
<th>Assay Buffer (µL)</th>
<th>Final volume standard in well (µL)</th>
<th>End Conc Substrate in well (pmol/well)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>150</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>144</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>138</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>132</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>126</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>120</td>
<td>50</td>
<td>10</td>
</tr>
</tbody>
</table>

Each dilution has enough amount of standard to set up duplicate readings (2 x 50 µL).
11. SAMPLE PREPARATION

General Sample Information

- We recommend performing several dilutions of your sample to ensure the readings are within the standard value range.
- We recommend that you use fresh samples. If you cannot perform the assay at the same time, we suggest that you complete the Sample Preparation step before storing the samples. Alternatively, if that is not possible, we suggest that you snap freeze your samples in liquid nitrogen upon extraction and store them immediately at -80°C. When you are ready to test your samples, thaw them on ice. Be aware however that this might affect the stability of your samples and the readings can be lower than expected.

11.1. Cell (adherent or suspension) samples:

11.1.1. Harvest the amount of cells necessary for each assay (initial recommendation = 1 x 10^6 cells).

11.1.2. Wash cells with cold PBS.

11.1.3. Resuspend cells in 200 μL of ice cold PBS.

11.1.4. Homogenize cells quickly by pipetting up and down a few times.

11.1.5. Centrifuge sample for 5 – 10 minutes at 4°C at 10,000 x g using a cold microcentrifuge to remove any insoluble material.

11.1.6. Collect supernatant and transfer to a clean tube.

Initial recommendation for assay: 10 – 50 μL/well.

11.2. Tissue Samples:

11.2.1. Rapidly homogenize tissue with 200 μL ice cold PBS (initial recommendation = 50 mg tissue).

11.2.2. Wash tissue in cold PBS.

11.2.3. Resuspend tissue in 200 μL of ice cold PBS.
11.2.4. Homogenize tissue with a Dounce homogenizer sitting on ice, with 10 – 15 passes.

11.2.5. Centrifuge samples for 5 – 10 minutes at 4°C at 10,000 x g using a cold microcentrifuge to remove any insoluble material.

11.2.6. Collect supernatant and transfer to a clean tube.
 Initial recommendation for assay: 10 – 50 µL/well.

11.3. **Plasma:**

 NOTE: *LPL is attached to endothelial cells by heparin-sulfated proteoglycans. Inject heparin into mouse/rat to release LPL into the blood. Isolate plasma to measure the LPL activity.*

 11.3.1. To measure maximum LPL activity in plasma, inject mouse/rat with 0.2 Units heparin/gram of body weight by tail vein injection.

 11.3.2. Collect blood 10 minutes after injection.

 11.3.3. Centrifuge samples at 3000 x g for 15 min. at 4°C using a cold microcentrifuge.

 11.3.4. Collect supernatant and transfer to a clean tube.
 Initial recommendation for assay: 1 – 10 µL/well.

11.4. **Purified Enzyme:**

 Purified protein should be dissolved in ddH$_2$O, PBS or appropriate buffer prior use.

 Initial recommendation for assay: 1 – 10 µL/well.

 NOTE: *We suggest using different volumes of sample to ensure readings are within the Standard Curve range.*
12. ASSAY PROCEDURE

- Equilibrate all materials and prepared reagents to room temperature prior to use.
- We recommend that you assay all standards, controls and samples in duplicate.

12.1. Prior to use, dilute positive control stock (section 9.3) 1:100 in ddH$_2$O as per assay requirement.

12.2. **Set up Reaction Wells**

Standard wells = 50 µL standard dilutions.
Sample wells = 1 – 50 µL samples (adjust volume to 50 µL/well with ddH$_2$O).
Background Control wells= 50 µL ddH$_2$O.
Positive Control wells = 4 µL diluted positive control (section 12.1) + 46 µL ddH$_2$O.
Assay Control wells = 4 µL diluted positive control (section 12.1) + 2 µL Inhibitor + 44 µL ddH$_2$O.

12.3. **LPL Reaction Mix:**

12.3.1. Prepare 50 µL of Reaction Mix for each standard reaction. Mix enough reagents for the number of standard reactions to be performed. Prepare a master mix of the Reaction Mix to ensure consistency. We recommend the following calculation: X µL component x (Number reactions +1).

<table>
<thead>
<tr>
<th>Components</th>
<th>Reaction Mix Standard (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Control</td>
<td>4</td>
</tr>
<tr>
<td>ddH$_2$O</td>
<td>46</td>
</tr>
</tbody>
</table>

12.3.2. Add 50 µL of Reaction Mix into each standard well. Mix well.
12.3.3. Add 50 µL of diluted Substrate (see Section 9.2) into each sample, Positive Control and assay validation well. Mix well.
ASSAY PROCEDURE

The table below summarizes how to set up the reactions:

<table>
<thead>
<tr>
<th>Components</th>
<th>Standard well (µL)</th>
<th>Sample well (µL)</th>
<th>Background control well (µL)</th>
<th>Positive control well (µL)</th>
<th>Assay Control well (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sample</td>
<td>-</td>
<td>1 – 50</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diluted positive control (1/100)</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Inhibitor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>-</td>
<td>Up to 50</td>
<td>50</td>
<td>46</td>
<td>44</td>
</tr>
<tr>
<td>Reaction Mix</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diluted substrate</td>
<td>-</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>TOTAL WELL</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

12.4. Pre-incubate the plate at 37°C for 10 minutes protected from light to stabilize the signal.

12.5. Measure output at Ex/Em = 482/515 nm on a microplate reader in a kinetic mode, every 10 minutes, for at least 1 hour at 37°C protected from light.

NOTE: Incubation time depends on the LPL Activity in the samples. We recommend measuring fluorescence in a kinetic mode, and choosing two time points (T1 and T2) in the linear range to calculate the LPL activity of the samples. The Standard Curve can be read in end point mode (i.e. at the end of incubation time). RFU value at T2 should not exceed the highest RFU in the standard curve. For standard curve, do not subtract RFU1 from RFU2 reading.
13. CALCULATIONS

- Samples producing signals greater than that of the highest standard should be further diluted in appropriate buffer and reanalyzed, then multiply the concentration found by the appropriate dilution factor.
- Ensure you are using the linear portion of the kinetic reading when calculating enzymatic activity.

13.1. Average the duplicate reading for each standard and sample.

13.2. Subtract the mean RFU value of the blank (Standard #1) from all standard and sample readings. This is the corrected RFU.

13.3. Plot the corrected RFU values for each standard as a function of the final concentration of Substrate.

13.4. Subtract Background Control (RC) reading from Sample (S) reading.

$$\Delta RFU_{S} = RFU_{2S} - RFU_{1S}$$

$$\Delta RFU_{BC} = RFU_{2BC} - RFU_{1BC}$$

Corrected RFU = RFU_{S} – RFU_{BC}

13.5. Use the corrected $\Delta RFU_{482/515nm}$ to obtain B pmol of Substrate formed during the reaction time ($\Delta T = T2 – T1$).

13.6. Activity of LPL in the test samples is calculated as:

$$LPL\ Activity = \left(\frac{B}{\Delta T \times V} \right) \times D = \text{pmol/mL/min} = \text{mU/mL}$$

Where:

- **B** = Amount of substrate in the sample well calculated from Standard Curve (pmol).
- **ΔT** = Reaction time (min).
- **V** = Original sample volume added into the reaction well (mL).
- **D** = Sample dilution factor.
DATA ANALYSIS

Alternatively, calculate the slope for all samples (S) and Reagent Control (RC) as follows:

13.7. Divide the net ΔRFU (RFU2 – RFU1) values of samples and background control by the time ΔT (T2 – T1).

13.8. Subtract the slope of Background Control (BC) from the slope of sample (S) to get the Sample corrected slope (S-corrected).

13.9. Activity of LPL in the test samples is calculated as:

\[
LPL \text{ Activity (mU)} = \left(\frac{\text{Slope}_{S-corrected}}{\text{Slope}_{Standard}} \right) \\
= \left(\frac{\Delta RFU_S}{\Delta T_S} - \frac{\Delta RFU_{BC}}{\Delta T_{BC}} \right)(\Delta RFU_C/pm)
\]

Where:

Slope_{S-corrected} is the corrected slope of the sample.

Slope_{Standard} is the slope of Standard Curve.

Unit Definition:

1 Unit LPL activity = amount of Lipoprotein Lipase that generates 1.0 nmol of fatty acid product per min. at pH 7.4 at 37°C.
14. TYPICAL DATA

TYPICAL STANDARD CURVE – Data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.

![Typical Substrate Standard calibration curve using the kit protocol.](image1)

Figure 1 Typical Substrate Standard calibration curve using the kit protocol.

![Measurement over time of LPL activity.](image2)

Figure 2. Measurement over time of LPL activity in purified enzyme from *Pseudomonas sp.* (5 ng), post-heparin treated mouse plasma (2 µL), lysate of 7-day post-differentiated 3T3-L1 cells (100 µg), and rat heart lysate (200 µg).
Figure 3. Inhibition of LPL activity from post-heparin treated mouse plasma by Angptl 4, a LPL specific inhibitor. The assay was run for 1 hour and the activity was determined by calculating the slope. The half minimal inhibitory concentration (IC_{50}) was found to be $IC_{50} = 22.6$ nM.

Figure 4. Inhibition of Positive Control by Orlistat, a generic lipase inhibitor. The assay was run for 1 hour and the IC_{50} was determined as $IC_{50} = 11.4$ µM.
15. QUICK ASSAY PROCEDURE

NOTE: This procedure is provided as a quick reference for experienced users. Follow the detailed procedure when performing the assay for the first time.

- Prepare standard, positive control and prepare enzyme mix (aliquot if necessary); get equipment ready.
- Prepare LPL substrate standard dilution [0 – 10 pmol/well].
- Prepare samples in optimal dilutions so that they fit standard curve readings.
- Set up plate in duplicate for standard (50 µL), samples (50 µL) and appropriate controls.
- Prepare a master mix for Lipoprotein Reaction Mix.

<table>
<thead>
<tr>
<th>Component</th>
<th>Reaction Mix (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Control</td>
<td>4</td>
</tr>
<tr>
<td>dH2O</td>
<td>46</td>
</tr>
</tbody>
</table>

- Add 50 µL of Lipoprotein Lipase Reaction Mix to the standard and sample wells.
- Add 50 µL of diluted Substrate into each sample, Positive Control and assay validation well. Mix well.
- Pre-Incubate plate at 37°C for 10 minutes protected from light.
- Incubate plate at 37°C for 30- 60 minutes protected from light and read fluorescence at Ex/Em= 482/515 nm in a kinetic mode.
RESOURCES

16. TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay not working</td>
<td>Use of ice-cold buffer</td>
<td>Buffers must be at room temperature</td>
</tr>
<tr>
<td></td>
<td>Plate read at incorrect wavelength</td>
<td>Check the wavelength and filter settings of instrument</td>
</tr>
<tr>
<td></td>
<td>Use of a different 96-well plate</td>
<td>Colorimetric: Clear plates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluorometric: black wells/clear bottom plate</td>
</tr>
<tr>
<td>Sample with erratic readings</td>
<td>Samples not deproteinized (if indicated on protocol)</td>
<td>Use provided protocol for deproteinization</td>
</tr>
<tr>
<td></td>
<td>Cells/tissue samples not homogenized completely</td>
<td>Use Dounce homogenizer, increase number of strokes</td>
</tr>
<tr>
<td></td>
<td>Samples used after multiple free/thaw cycles</td>
<td>Aliquot and freeze samples if needed to use multiple times</td>
</tr>
<tr>
<td></td>
<td>Use of old or inappropriately stored samples</td>
<td>Use fresh samples or store at -80°C (after snap freeze in liquid nitrogen) till use</td>
</tr>
<tr>
<td></td>
<td>Presence of interfering substance in the sample</td>
<td>Check protocol for interfering substances; deproteinize samples</td>
</tr>
<tr>
<td>Lower/ Higher readings in</td>
<td>Improperly thawed components</td>
<td>Thaw all components completely and mix gently before use</td>
</tr>
<tr>
<td>samples and standards</td>
<td>Allows reagents to sit for extended times on ice</td>
<td>Always thaw and prepare fresh reaction mix before use</td>
</tr>
<tr>
<td></td>
<td>Incorrect incubation times or temperatures</td>
<td>Verify correct incubation times and temperatures in protocol</td>
</tr>
<tr>
<td></td>
<td>Standard stock is at incorrect concentration</td>
<td>Always refer to dilutions described in the protocol</td>
</tr>
</tbody>
</table>
RESOURCES

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard readings do not follow a linear pattern</td>
<td>Pipetting errors in standard or reaction mix</td>
<td>Avoid pipetting small volumes (< 5 µL) and prepare a master mix whenever possible</td>
</tr>
<tr>
<td></td>
<td>Air bubbles formed in well</td>
<td>Pipette gently against the wall of the tubes</td>
</tr>
<tr>
<td></td>
<td>Standard stock is at incorrect concentration</td>
<td>Always refer to dilutions described in the protocol</td>
</tr>
<tr>
<td>Unanticipated results</td>
<td>Measured at incorrect wavelength</td>
<td>Check equipment and filter setting</td>
</tr>
<tr>
<td></td>
<td>Samples contain interfering substances</td>
<td>Troubleshoot if it interferes with the kit</td>
</tr>
<tr>
<td></td>
<td>Sample readings above/ below the linear range</td>
<td>Concentrate/ Dilute sample so it is within the linear range</td>
</tr>
</tbody>
</table>
17. INTERFERENCES

These chemicals or biological materials will cause interferences in this assay causing compromised results or complete failure:

- RIPA buffer – it contains SDS which can destroy/decrease the activity of the enzyme.

18. FAQ