abcam

Product datasheet

Anti-LIS1 antibody [EPR3335(2)] ab109630

重组 RabMAb

4 References 4 图像

概述

产品名称 Anti-LIS1抗体[EPR3335(2)]

描述 兔单克隆抗体[EPR3335(2)] to LIS1

宿主 Rabbit

经测试应用 适用于: Flow Cyt (Intra), WB

不适用于: ICC/IF or IHC-P

种属反应性 与反应: Human

预测可用于: Mouse, Rat 🔷

Synthetic peptide. This information is proprietary to Abcam and/or its suppliers. 免疫原

阳性对照 Human fetal brain, HeLa, SH-SY5Y, and 293T cell lysates, HeLa cells

常规说明 This product is a recombinant monoclonal antibody, which offers several advantages including:

- High batch-to-batch consistency and reproducibility

- Improved sensitivity and specificity

- Long-term security of supply

- Animal-free production

For more information see here.

Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.

性能

形式 Liquid

存放说明 Shipped at 4°C. Store at -20°C. Stable for 12 months at -20°C.

存储溶液 pH: 7.20

Preservative: 0.05% Sodium azide

Constituents: 0.1% BSA, 40% Glycerol (glycerin, glycerine), 9.85% Tris glycine, 50% Tissue

culture supernatant

纯度 Protein A purified

克隆 单克隆

克隆编号 EPR3335(2)

同种型 IgG

应用

The Abpromise guarantee

Abpromise™承诺保证使用ab109630于以下的经测试应用

"应用说明"部分 下显示的仅为推荐的起始稀释度;实际最佳的稀释度/浓度应由使用者检定。

应 用	Ab评论	说明
Flow Cyt (Intra)		1/1000 - 1/10000. ab172730 - Rabbit monoclonal lgG, is suitable for use as an isotype control with this antibody.
WB		1/1000 - 1/10000. Predicted molecular weight: 47 kDa.

应用说明

Is unsuitable for ICC/IF or IHC-P.

靶标

功能

Required for proper activation of Rho GTPases and actin polymerization at the leading edge of locomoting cerebellar neurons and postmigratory hippocampal neurons in response to calcium influx triggered via NMDA receptors. Non-catalytic subunit of an acetylhydrolase complex which inactivates platelet-activating factor (PAF) by removing the acetyl group at the SN-2 position (By similarity). Positively regulates the activity of the minus-end directed microtubule motor protein dynein. May enhance dynein-mediated microtubule sliding by targeting dynein to the microtubule plus end. Required for several dynein- and microtubule-dependent processes such as the maintenance of Golgi integrity, the peripheral transport of microtubule fragments and the coupling of the nucleus and centrosome. Required during brain development for the proliferation of neuronal precursors and the migration of newly formed neurons from the ventricular/subventricular zone toward the cortical plate. Neuronal migration involves a process called nucleokinesis, whereby migrating cells extend an anterior process into which the nucleus subsequently translocates. During nucleokinesis dynein at the nuclear surface may translocate the nucleus towards the centrosome by exerting force on centrosomal microtubules. May also play a role in other forms of cell locomotion including the migration of fibroblasts during wound healing.

组织特异性

疾病相关

Fairly ubiquitous expression in both the frontal and occipital areas of the brain.

Defects in PAFAH1B1 are the cause of lissencephaly type 1 (LIS1) [MIM:607432]; also known as classic lissencephaly. LIS1 is characterized by agyria or pachgyria and disorganization of the clear neuronal lamination of normal six-layered cortex. The cortex is abnormally thick and poorly organized with 4 primitive layers. LIS1 is associated with enlarged and dysmorphic ventricles and often hypoplasia of the corpus callosum.

Defects in PAFAH1B1 are the cause of subcortical band heterotopia (SBH) [MIM:607432]. SBH is a mild brain malformation of the lissencephaly spectrum. It is characterized by bilateral and symmetric ribbons of gray matter found in the central white matter between the cortex and the ventricular surface.

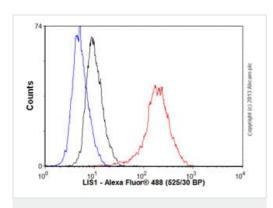
Defects in PAFAH1B1 are a cause of Miller-Dieker lissencephaly syndrome (MDLS) [MIM:247200]. MDLS is a contiguous gene deletion syndrome of chromosome 17p13.3, characterized by classical lissencephaly and distinct facial features. Additional congenital malformations can be part of the condition.

Belongs to the WD repeat LIS1/nudF family.

序列相似性

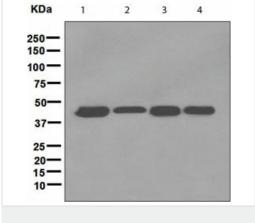
Contains 1 LisH domain. Contains 7 WD repeats.

Contains / WD repeats.


Dimerization mediated by the LisH domain may be required to activate dynein.

Cytoplasm > cytoskeleton. Cytoplasm > cytoskeleton > centrosome. Cytoplasm > cytoskeleton > spindle. Nucleus membrane. Redistributes to axons during neuronal development. Also localizes to the microtubules of the manchette in elongating spermatids and to the meiotic spindle in spermatocytes (By similarity). Localizes to the plus end of microtubules and to the centrosome. May localize to the nuclear membrane.

图片


结构域

细胞定位

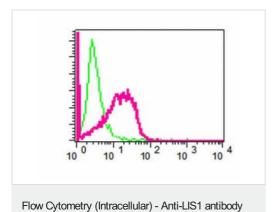
Flow Cytometry (Intracellular) - Anti-LIS1 antibody [EPR3335(2)] (ab109630)

Overlay histogram showing SHSY-5Y cells stained with ab109630 (red line). The cells were fixed with 4% paraformaldehyde (10 min) and then permeabilized with 0.1% PBS-Tween for 20 min. The cells were then incubated in 1x PBS / 10% normal goat serum / 0.3M glycine to block non-specific protein-protein interactions followed by the antibody (ab109630, 1/10000 dilution) for 30 min at 22°C. The secondary antibody used was Alexa Fluor 488 goat anti-rabbit lgG (H&L) (ab150077) at 1/2000 dilution for 30 min at 22°C. Isotype control antibody (black line) was rabbit lgG (monoclonal) (0.1 μ g/1x106 cells) used under the same conditions. Unlabelled sample (blue line) was also used as a control. Acquisition of >5,000 events were collected using a 20mW Argon ion laser (488nm) and 525/30 bandpass filter. This antibody gave a positive signal in SHSY-5Y cells fixed with 80% methanol (5 min)/permeabilized with 0.1% PBS-Tween for 20 min used under the same conditions.

Western blot - Anti-LIS1 antibody [EPR3335(2)] (ab109630)

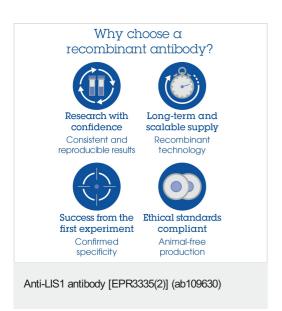
All lanes : Anti-LIS1 antibody [EPR3335(2)] (ab109630) at 1/1000 dilution

Lane 1: Human fetal brain lysate


Lane 2: HeLa cell lysate

Lane 3: SH-SY5Y cell lysate

Lane 4: 293T cell lysate


Lysates/proteins at 10 µg per lane.

Predicted band size: 47 kDa

[EPR3335(2)] (ab109630)

Intracellular flow cytometric analysis of permeabilized HeLa cells using ab109630 at a dilution of 1/10 (red) or a rabbit lgG (negative) (green).

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- · Replacement or refund for products not performing as stated on the datasheet
- · Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- · We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.cn/abpromise or contact our technical team.

Terms and conditions

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors				
		5			